Metamath Proof Explorer


Theorem opexmid

Description: Law of excluded middle for orthoposets. ( chjo analog.) (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opexmid.b B = Base K
opexmid.o ˙ = oc K
opexmid.j ˙ = join K
opexmid.u 1 ˙ = 1. K
Assertion opexmid K OP X B X ˙ ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 opexmid.b B = Base K
2 opexmid.o ˙ = oc K
3 opexmid.j ˙ = join K
4 opexmid.u 1 ˙ = 1. K
5 eqid K = K
6 eqid meet K = meet K
7 eqid 0. K = 0. K
8 1 5 2 3 6 7 4 oposlem K OP X B X B ˙ X B ˙ ˙ X = X X K X ˙ X K ˙ X X ˙ ˙ X = 1 ˙ X meet K ˙ X = 0. K
9 8 3anidm23 K OP X B ˙ X B ˙ ˙ X = X X K X ˙ X K ˙ X X ˙ ˙ X = 1 ˙ X meet K ˙ X = 0. K
10 9 simp2d K OP X B X ˙ ˙ X = 1 ˙