Metamath Proof Explorer


Theorem oppcsect2

Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcsect.b B=BaseC
oppcsect.o O=oppCatC
oppcsect.c φCCat
oppcsect.x φXB
oppcsect.y φYB
oppcsect.s S=SectC
oppcsect.t T=SectO
Assertion oppcsect2 φXTY=XSY-1

Proof

Step Hyp Ref Expression
1 oppcsect.b B=BaseC
2 oppcsect.o O=oppCatC
3 oppcsect.c φCCat
4 oppcsect.x φXB
5 oppcsect.y φYB
6 oppcsect.s S=SectC
7 oppcsect.t T=SectO
8 2 1 oppcbas B=BaseO
9 eqid HomO=HomO
10 eqid compO=compO
11 eqid IdO=IdO
12 2 oppccat CCatOCat
13 3 12 syl φOCat
14 8 9 10 11 7 13 4 5 sectss φXTYXHomOY×YHomOX
15 relxp RelXHomOY×YHomOX
16 relss XTYXHomOY×YHomOXRelXHomOY×YHomOXRelXTY
17 14 15 16 mpisyl φRelXTY
18 relcnv RelXSY-1
19 18 a1i φRelXSY-1
20 1 2 3 4 5 6 7 oppcsect φfXTYggXSYf
21 vex fV
22 vex gV
23 21 22 brcnv fXSY-1ggXSYf
24 20 23 bitr4di φfXTYgfXSY-1g
25 17 19 24 eqbrrdv φXTY=XSY-1