Metamath Proof Explorer


Theorem oppglt

Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses oppglt.1 O=opp𝑔R
oppglt.2 <˙=<R
Assertion oppglt RV<˙=<O

Proof

Step Hyp Ref Expression
1 oppglt.1 O=opp𝑔R
2 oppglt.2 <˙=<R
3 eqid R=R
4 3 2 pltfval RV<˙=RI
5 1 fvexi OV
6 1 3 oppgle R=O
7 eqid <O=<O
8 6 7 pltfval OV<O=RI
9 5 8 ax-mp <O=RI
10 4 9 eqtr4di RV<˙=<O