Metamath Proof Explorer


Theorem opprlem

Description: Lemma for opprbas and oppradd . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses opprbas.1 O=opprR
opprlem.2 E=SlotEndx
opprlem.3 Endxndx
Assertion opprlem ER=EO

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 opprlem.2 E=SlotEndx
3 opprlem.3 Endxndx
4 2 3 setsnid ER=ERsSetndxtposR
5 eqid BaseR=BaseR
6 eqid R=R
7 5 6 1 opprval O=RsSetndxtposR
8 7 fveq2i EO=ERsSetndxtposR
9 4 8 eqtr4i ER=EO