Description: Bidirectional form of opprring . (Contributed by Mario Carneiro, 6-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opprbas.1 | |
|
Assertion | opprringb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | |
|
2 | 1 | opprring | |
3 | eqid | |
|
4 | 3 | opprring | |
5 | eqidd | |
|
6 | eqid | |
|
7 | 1 6 | opprbas | |
8 | 3 7 | opprbas | |
9 | 8 | a1i | |
10 | eqid | |
|
11 | 1 10 | oppradd | |
12 | 3 11 | oppradd | |
13 | 12 | oveqi | |
14 | 13 | a1i | |
15 | eqid | |
|
16 | eqid | |
|
17 | 7 15 3 16 | opprmul | |
18 | eqid | |
|
19 | 6 18 1 15 | opprmul | |
20 | 17 19 | eqtr2i | |
21 | 20 | a1i | |
22 | 5 9 14 21 | ringpropd | |
23 | 22 | mptru | |
24 | 4 23 | sylibr | |
25 | 2 24 | impbii | |