Metamath Proof Explorer


Theorem opprringb

Description: Bidirectional form of opprring . (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Hypothesis opprbas.1 O=opprR
Assertion opprringb RRingORing

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 1 opprring RRingORing
3 eqid opprO=opprO
4 3 opprring ORingopprORing
5 eqidd BaseR=BaseR
6 eqid BaseR=BaseR
7 1 6 opprbas BaseR=BaseO
8 3 7 opprbas BaseR=BaseopprO
9 8 a1i BaseR=BaseopprO
10 eqid +R=+R
11 1 10 oppradd +R=+O
12 3 11 oppradd +R=+opprO
13 12 oveqi x+Ry=x+opprOy
14 13 a1i xBaseRyBaseRx+Ry=x+opprOy
15 eqid O=O
16 eqid opprO=opprO
17 7 15 3 16 opprmul xopprOy=yOx
18 eqid R=R
19 6 18 1 15 opprmul yOx=xRy
20 17 19 eqtr2i xRy=xopprOy
21 20 a1i xBaseRyBaseRxRy=xopprOy
22 5 9 14 21 ringpropd RRingopprORing
23 22 mptru RRingopprORing
24 4 23 sylibr ORingRRing
25 2 24 impbii RRingORing