Metamath Proof Explorer


Theorem oprabbidv

Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)

Ref Expression
Hypothesis oprabbidv.1 φψχ
Assertion oprabbidv φxyz|ψ=xyz|χ

Proof

Step Hyp Ref Expression
1 oprabbidv.1 φψχ
2 1 anbi2d φw=xyzψw=xyzχ
3 2 exbidv φzw=xyzψzw=xyzχ
4 3 exbidv φyzw=xyzψyzw=xyzχ
5 4 exbidv φxyzw=xyzψxyzw=xyzχ
6 5 abbidv φw|xyzw=xyzψ=w|xyzw=xyzχ
7 df-oprab xyz|ψ=w|xyzw=xyzψ
8 df-oprab xyz|χ=w|xyzw=xyzχ
9 6 7 8 3eqtr4g φxyz|ψ=xyz|χ