Metamath Proof Explorer


Theorem oprabco

Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 26-Sep-2015)

Ref Expression
Hypotheses oprabco.1 xAyBCD
oprabco.2 F=xA,yBC
oprabco.3 G=xA,yBHC
Assertion oprabco HFnDG=HF

Proof

Step Hyp Ref Expression
1 oprabco.1 xAyBCD
2 oprabco.2 F=xA,yBC
3 oprabco.3 G=xA,yBHC
4 1 adantl HFnDxAyBCD
5 2 a1i HFnDF=xA,yBC
6 dffn5 HFnDH=zDHz
7 6 biimpi HFnDH=zDHz
8 fveq2 z=CHz=HC
9 4 5 7 8 fmpoco HFnDHF=xA,yBHC
10 3 9 eqtr4id HFnDG=HF