Metamath Proof Explorer


Theorem oprssdm

Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995)

Ref Expression
Hypotheses oprssdm.1 ¬S
oprssdm.2 xSySxFyS
Assertion oprssdm S×SdomF

Proof

Step Hyp Ref Expression
1 oprssdm.1 ¬S
2 oprssdm.2 xSySxFyS
3 relxp RelS×S
4 opelxp xyS×SxSyS
5 df-ov xFy=Fxy
6 5 2 eqeltrrid xSySFxyS
7 ndmfv ¬xydomFFxy=
8 7 eleq1d ¬xydomFFxySS
9 1 8 mtbiri ¬xydomF¬FxyS
10 9 con4i FxySxydomF
11 6 10 syl xSySxydomF
12 4 11 sylbi xyS×SxydomF
13 3 12 relssi S×SdomF