Metamath Proof Explorer


Theorem opsbc2ie

Description: Conversion of implicit substitution to explicit class substitution for ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypothesis opsbc2ie.a p = a b φ χ
Assertion opsbc2ie p = x y φ [˙y / b]˙ [˙x / a]˙ χ

Proof

Step Hyp Ref Expression
1 opsbc2ie.a p = a b φ χ
2 1 sbcth x V [˙x / a]˙ p = a b φ χ
3 sbcim1 [˙x / a]˙ p = a b φ χ [˙x / a]˙ p = a b [˙x / a]˙ φ χ
4 2 3 syl x V [˙x / a]˙ p = a b [˙x / a]˙ φ χ
5 sbceq2g x V [˙x / a]˙ p = a b p = x / a a b
6 csbopg x V x / a a b = x / a a x / a b
7 csbvarg x V x / a a = x
8 csbconstg x V x / a b = b
9 7 8 opeq12d x V x / a a x / a b = x b
10 6 9 eqtrd x V x / a a b = x b
11 10 eqeq2d x V p = x / a a b p = x b
12 5 11 bitrd x V [˙x / a]˙ p = a b p = x b
13 sbcbig x V [˙x / a]˙ φ χ [˙x / a]˙ φ [˙x / a]˙ χ
14 sbcg x V [˙x / a]˙ φ φ
15 14 bibi1d x V [˙x / a]˙ φ [˙x / a]˙ χ φ [˙x / a]˙ χ
16 13 15 bitrd x V [˙x / a]˙ φ χ φ [˙x / a]˙ χ
17 4 12 16 3imtr3d x V p = x b φ [˙x / a]˙ χ
18 17 elv p = x b φ [˙x / a]˙ χ
19 18 sbcth y V [˙y / b]˙ p = x b φ [˙x / a]˙ χ
20 sbcim1 [˙y / b]˙ p = x b φ [˙x / a]˙ χ [˙y / b]˙ p = x b [˙y / b]˙ φ [˙x / a]˙ χ
21 19 20 syl y V [˙y / b]˙ p = x b [˙y / b]˙ φ [˙x / a]˙ χ
22 sbceq2g y V [˙y / b]˙ p = x b p = y / b x b
23 csbopg y V y / b x b = y / b x y / b b
24 csbconstg y V y / b x = x
25 csbvarg y V y / b b = y
26 24 25 opeq12d y V y / b x y / b b = x y
27 23 26 eqtrd y V y / b x b = x y
28 27 eqeq2d y V p = y / b x b p = x y
29 22 28 bitrd y V [˙y / b]˙ p = x b p = x y
30 sbcbig y V [˙y / b]˙ φ [˙x / a]˙ χ [˙y / b]˙ φ [˙y / b]˙ [˙x / a]˙ χ
31 sbcg y V [˙y / b]˙ φ φ
32 31 bibi1d y V [˙y / b]˙ φ [˙y / b]˙ [˙x / a]˙ χ φ [˙y / b]˙ [˙x / a]˙ χ
33 30 32 bitrd y V [˙y / b]˙ φ [˙x / a]˙ χ φ [˙y / b]˙ [˙x / a]˙ χ
34 21 29 33 3imtr3d y V p = x y φ [˙y / b]˙ [˙x / a]˙ χ
35 34 elv p = x y φ [˙y / b]˙ [˙x / a]˙ χ