Metamath Proof Explorer


Theorem opsbc2ie

Description: Conversion of implicit substitution to explicit class substitution for ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Hypothesis opsbc2ie.a p=abφχ
Assertion opsbc2ie p=xyφ[˙y/b]˙[˙x/a]˙χ

Proof

Step Hyp Ref Expression
1 opsbc2ie.a p=abφχ
2 1 sbcth xV[˙x/a]˙p=abφχ
3 sbcim1 [˙x/a]˙p=abφχ[˙x/a]˙p=ab[˙x/a]˙φχ
4 2 3 syl xV[˙x/a]˙p=ab[˙x/a]˙φχ
5 sbceq2g xV[˙x/a]˙p=abp=x/aab
6 csbopg xVx/aab=x/aax/ab
7 csbvarg xVx/aa=x
8 csbconstg xVx/ab=b
9 7 8 opeq12d xVx/aax/ab=xb
10 6 9 eqtrd xVx/aab=xb
11 10 eqeq2d xVp=x/aabp=xb
12 5 11 bitrd xV[˙x/a]˙p=abp=xb
13 sbcbig xV[˙x/a]˙φχ[˙x/a]˙φ[˙x/a]˙χ
14 sbcg xV[˙x/a]˙φφ
15 14 bibi1d xV[˙x/a]˙φ[˙x/a]˙χφ[˙x/a]˙χ
16 13 15 bitrd xV[˙x/a]˙φχφ[˙x/a]˙χ
17 4 12 16 3imtr3d xVp=xbφ[˙x/a]˙χ
18 17 elv p=xbφ[˙x/a]˙χ
19 18 sbcth yV[˙y/b]˙p=xbφ[˙x/a]˙χ
20 sbcim1 [˙y/b]˙p=xbφ[˙x/a]˙χ[˙y/b]˙p=xb[˙y/b]˙φ[˙x/a]˙χ
21 19 20 syl yV[˙y/b]˙p=xb[˙y/b]˙φ[˙x/a]˙χ
22 sbceq2g yV[˙y/b]˙p=xbp=y/bxb
23 csbopg yVy/bxb=y/bxy/bb
24 csbconstg yVy/bx=x
25 csbvarg yVy/bb=y
26 24 25 opeq12d yVy/bxy/bb=xy
27 23 26 eqtrd yVy/bxb=xy
28 27 eqeq2d yVp=y/bxbp=xy
29 22 28 bitrd yV[˙y/b]˙p=xbp=xy
30 sbcbig yV[˙y/b]˙φ[˙x/a]˙χ[˙y/b]˙φ[˙y/b]˙[˙x/a]˙χ
31 sbcg yV[˙y/b]˙φφ
32 31 bibi1d yV[˙y/b]˙φ[˙y/b]˙[˙x/a]˙χφ[˙y/b]˙[˙x/a]˙χ
33 30 32 bitrd yV[˙y/b]˙φ[˙x/a]˙χφ[˙y/b]˙[˙x/a]˙χ
34 21 29 33 3imtr3d yVp=xyφ[˙y/b]˙[˙x/a]˙χ
35 34 elv p=xyφ[˙y/b]˙[˙x/a]˙χ