Metamath Proof Explorer


Theorem opreu2reuALT

Description: Correspondence between uniqueness of ordered pairs and double restricted existential uniqueness quantification. Alternate proof of one direction only, use opreu2reurex instead. (Contributed by Thierry Arnoux, 4-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis opsbc2ie.a p = a b φ χ
Assertion opreu2reuALT ∃! a A b B χ ∃! b B a A χ ∃! p A × B φ

Proof

Step Hyp Ref Expression
1 opsbc2ie.a p = a b φ χ
2 2reu4 ∃! a A b B χ ∃! b B a A χ a A b B χ x A y B a A b B χ a = x b = y
3 simpllr a A b B χ x A y B a A b B χ a = x b = y x A
4 simplr a A b B χ x A y B a A b B χ a = x b = y y B
5 opelxpi x A y B x y A × B
6 3 4 5 syl2anc a A b B χ x A y B a A b B χ a = x b = y x y A × B
7 nfre1 a a A b B χ
8 nfv a x A
9 7 8 nfan a a A b B χ x A
10 nfv a y B
11 9 10 nfan a a A b B χ x A y B
12 nfra1 a a A b B χ a = x b = y
13 11 12 nfan a a A b B χ x A y B a A b B χ a = x b = y
14 nfcv _ a y
15 nfsbc1v a [˙x / a]˙ χ
16 14 15 nfsbc a [˙y / b]˙ [˙x / a]˙ χ
17 nfcv _ b A
18 nfre1 b b B χ
19 17 18 nfrex b a A b B χ
20 nfv b x A
21 19 20 nfan b a A b B χ x A
22 nfv b y B
23 21 22 nfan b a A b B χ x A y B
24 nfra1 b b B χ a = x b = y
25 17 24 nfral b a A b B χ a = x b = y
26 23 25 nfan b a A b B χ x A y B a A b B χ a = x b = y
27 nfv b a A
28 26 27 nfan b a A b B χ x A y B a A b B χ a = x b = y a A
29 28 18 nfan b a A b B χ x A y B a A b B χ a = x b = y a A b B χ
30 nfsbc1v b [˙y / b]˙ [˙x / a]˙ χ
31 rspa a A b B χ a = x b = y a A b B χ a = x b = y
32 31 ad5ant23 a A b B χ x A y B a A b B χ a = x b = y a A b B χ b B χ a = x b = y
33 simplr a A b B χ x A y B a A b B χ a = x b = y a A b B χ b B
34 simpr a A b B χ x A y B a A b B χ a = x b = y a A b B χ χ
35 rspa b B χ a = x b = y b B χ a = x b = y
36 35 imp b B χ a = x b = y b B χ a = x b = y
37 32 33 34 36 syl21anc a A b B χ x A y B a A b B χ a = x b = y a A b B χ a = x b = y
38 37 simprd a A b B χ x A y B a A b B χ a = x b = y a A b B χ b = y
39 37 simpld a A b B χ x A y B a A b B χ a = x b = y a A b B χ a = x
40 sbceq1a a = x χ [˙x / a]˙ χ
41 40 biimpa a = x χ [˙x / a]˙ χ
42 39 34 41 syl2anc a A b B χ x A y B a A b B χ a = x b = y a A b B χ [˙x / a]˙ χ
43 sbceq1a b = y [˙x / a]˙ χ [˙y / b]˙ [˙x / a]˙ χ
44 43 biimpa b = y [˙x / a]˙ χ [˙y / b]˙ [˙x / a]˙ χ
45 38 42 44 syl2anc a A b B χ x A y B a A b B χ a = x b = y a A b B χ [˙y / b]˙ [˙x / a]˙ χ
46 45 adantllr a A b B χ x A y B a A b B χ a = x b = y a A b B χ b B χ [˙y / b]˙ [˙x / a]˙ χ
47 simpr a A b B χ x A y B a A b B χ a = x b = y a A b B χ b B χ
48 29 30 46 47 r19.29af2 a A b B χ x A y B a A b B χ a = x b = y a A b B χ [˙y / b]˙ [˙x / a]˙ χ
49 simplll a A b B χ x A y B a A b B χ a = x b = y a A b B χ
50 13 16 48 49 r19.29af2 a A b B χ x A y B a A b B χ a = x b = y [˙y / b]˙ [˙x / a]˙ χ
51 1st2nd2 p A × B p = 1 st p 2 nd p
52 51 ad2antlr a A b B χ x A y B a A b B χ a = x b = y p A × B φ p = 1 st p 2 nd p
53 nfv a p A × B
54 13 53 nfan a a A b B χ x A y B a A b B χ a = x b = y p A × B
55 nfv a φ
56 54 55 nfan a a A b B χ x A y B a A b B χ a = x b = y p A × B φ
57 nfv b p A × B
58 26 57 nfan b a A b B χ x A y B a A b B χ a = x b = y p A × B
59 nfv b φ
60 58 59 nfan b a A b B χ x A y B a A b B χ a = x b = y p A × B φ
61 nfv a φ 1 st p = x 2 nd p = y
62 nfv b φ 1 st p = x 2 nd p = y
63 xp1st p A × B 1 st p A
64 63 ad2antlr a A b B χ x A y B a A b B χ a = x b = y p A × B φ 1 st p A
65 xp2nd p A × B 2 nd p B
66 65 ad2antlr a A b B χ x A y B a A b B χ a = x b = y p A × B φ 2 nd p B
67 eqcom 1 st p = a a = 1 st p
68 eqcom 2 nd p = b b = 2 nd p
69 eqopi p A × B 1 st p = a 2 nd p = b p = a b
70 69 1 syl p A × B 1 st p = a 2 nd p = b φ χ
71 70 bicomd p A × B 1 st p = a 2 nd p = b χ φ
72 71 ancoms 1 st p = a 2 nd p = b p A × B χ φ
73 72 ex 1 st p = a 2 nd p = b p A × B χ φ
74 67 68 73 syl2anbr a = 1 st p b = 2 nd p p A × B χ φ
75 74 impcom p A × B a = 1 st p b = 2 nd p χ φ
76 75 ad4ant24 a A b B χ x A y B a A b B χ a = x b = y p A × B φ a = 1 st p b = 2 nd p χ φ
77 simpl a = 1 st p b = 2 nd p a = 1 st p
78 77 eqeq1d a = 1 st p b = 2 nd p a = x 1 st p = x
79 simpr a = 1 st p b = 2 nd p b = 2 nd p
80 79 eqeq1d a = 1 st p b = 2 nd p b = y 2 nd p = y
81 78 80 anbi12d a = 1 st p b = 2 nd p a = x b = y 1 st p = x 2 nd p = y
82 81 adantl a A b B χ x A y B a A b B χ a = x b = y p A × B φ a = 1 st p b = 2 nd p a = x b = y 1 st p = x 2 nd p = y
83 76 82 imbi12d a A b B χ x A y B a A b B χ a = x b = y p A × B φ a = 1 st p b = 2 nd p χ a = x b = y φ 1 st p = x 2 nd p = y
84 simpllr a A b B χ x A y B a A b B χ a = x b = y p A × B φ a A b B χ a = x b = y
85 56 60 61 62 64 66 83 84 rspc2daf a A b B χ x A y B a A b B χ a = x b = y p A × B φ φ 1 st p = x 2 nd p = y
86 85 com12 φ a A b B χ x A y B a A b B χ a = x b = y p A × B φ 1 st p = x 2 nd p = y
87 86 anabsi7 a A b B χ x A y B a A b B χ a = x b = y p A × B φ 1 st p = x 2 nd p = y
88 87 simpld a A b B χ x A y B a A b B χ a = x b = y p A × B φ 1 st p = x
89 87 simprd a A b B χ x A y B a A b B χ a = x b = y p A × B φ 2 nd p = y
90 88 89 opeq12d a A b B χ x A y B a A b B χ a = x b = y p A × B φ 1 st p 2 nd p = x y
91 52 90 eqtrd a A b B χ x A y B a A b B χ a = x b = y p A × B φ p = x y
92 91 ex a A b B χ x A y B a A b B χ a = x b = y p A × B φ p = x y
93 92 ralrimiva a A b B χ x A y B a A b B χ a = x b = y p A × B φ p = x y
94 6 50 93 3jca a A b B χ x A y B a A b B χ a = x b = y x y A × B [˙y / b]˙ [˙x / a]˙ χ p A × B φ p = x y
95 1 opsbc2ie p = x y φ [˙y / b]˙ [˙x / a]˙ χ
96 95 eqreu x y A × B [˙y / b]˙ [˙x / a]˙ χ p A × B φ p = x y ∃! p A × B φ
97 94 96 syl a A b B χ x A y B a A b B χ a = x b = y ∃! p A × B φ
98 97 r19.29ffa a A b B χ x A y B a A b B χ a = x b = y ∃! p A × B φ
99 2 98 sylbi ∃! a A b B χ ∃! b B a A χ ∃! p A × B φ