| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsbc2ie.a | ⊢ ( 𝑝  =  〈 𝑎 ,  𝑏 〉  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 2 |  | 2reu4 | ⊢ ( ( ∃! 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  ∃! 𝑏  ∈  𝐵 ∃ 𝑎  ∈  𝐴 𝜒 )  ↔  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) ) | 
						
							| 3 |  | simpllr | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 4 |  | simplr | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 5 |  | opelxpi | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ×  𝐵 ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ×  𝐵 ) ) | 
						
							| 7 |  | nfre1 | ⊢ Ⅎ 𝑎 ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑎 𝑥  ∈  𝐴 | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑎 ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑎 𝑦  ∈  𝐵 | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑎 ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 ) | 
						
							| 12 |  | nfra1 | ⊢ Ⅎ 𝑎 ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) | 
						
							| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑎 ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑎 𝑦 | 
						
							| 15 |  | nfsbc1v | ⊢ Ⅎ 𝑎 [ 𝑥  /  𝑎 ] 𝜒 | 
						
							| 16 | 14 15 | nfsbc | ⊢ Ⅎ 𝑎 [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑏 𝐴 | 
						
							| 18 |  | nfre1 | ⊢ Ⅎ 𝑏 ∃ 𝑏  ∈  𝐵 𝜒 | 
						
							| 19 | 17 18 | nfrexw | ⊢ Ⅎ 𝑏 ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒 | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑏 𝑥  ∈  𝐴 | 
						
							| 21 | 19 20 | nfan | ⊢ Ⅎ 𝑏 ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑏 𝑦  ∈  𝐵 | 
						
							| 23 | 21 22 | nfan | ⊢ Ⅎ 𝑏 ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 ) | 
						
							| 24 |  | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) | 
						
							| 25 | 17 24 | nfral | ⊢ Ⅎ 𝑏 ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) | 
						
							| 26 | 23 25 | nfan | ⊢ Ⅎ 𝑏 ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑏 𝑎  ∈  𝐴 | 
						
							| 28 | 26 27 | nfan | ⊢ Ⅎ 𝑏 ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 ) | 
						
							| 29 | 28 18 | nfan | ⊢ Ⅎ 𝑏 ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  ∃ 𝑏  ∈  𝐵 𝜒 ) | 
						
							| 30 |  | nfsbc1v | ⊢ Ⅎ 𝑏 [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 | 
						
							| 31 |  | rspa | ⊢ ( ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) )  ∧  𝑎  ∈  𝐴 )  →  ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) | 
						
							| 32 | 31 | ad5ant23 | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  𝑏  ∈  𝐵 ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  𝜒 ) | 
						
							| 35 |  | rspa | ⊢ ( ( ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) )  ∧  𝑏  ∈  𝐵 )  →  ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( ( ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) | 
						
							| 37 | 32 33 34 36 | syl21anc | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) | 
						
							| 38 | 37 | simprd | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  𝑏  =  𝑦 ) | 
						
							| 39 | 37 | simpld | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  𝑎  =  𝑥 ) | 
						
							| 40 |  | sbceq1a | ⊢ ( 𝑎  =  𝑥  →  ( 𝜒  ↔  [ 𝑥  /  𝑎 ] 𝜒 ) ) | 
						
							| 41 | 40 | biimpa | ⊢ ( ( 𝑎  =  𝑥  ∧  𝜒 )  →  [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 42 | 39 34 41 | syl2anc | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 43 |  | sbceq1a | ⊢ ( 𝑏  =  𝑦  →  ( [ 𝑥  /  𝑎 ] 𝜒  ↔  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( 𝑏  =  𝑦  ∧  [ 𝑥  /  𝑎 ] 𝜒 )  →  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 45 | 38 42 44 | syl2anc | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 46 | 45 | adantllr | ⊢ ( ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  ∃ 𝑏  ∈  𝐵 𝜒 )  ∧  𝑏  ∈  𝐵 )  ∧  𝜒 )  →  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  ∃ 𝑏  ∈  𝐵 𝜒 )  →  ∃ 𝑏  ∈  𝐵 𝜒 ) | 
						
							| 48 | 29 30 46 47 | r19.29af2 | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑎  ∈  𝐴 )  ∧  ∃ 𝑏  ∈  𝐵 𝜒 )  →  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 49 |  | simplll | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒 ) | 
						
							| 50 | 13 16 48 49 | r19.29af2 | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) | 
						
							| 51 |  | 1st2nd2 | ⊢ ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  →  𝑝  =  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 52 | 51 | ad2antlr | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  𝑝  =  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 53 |  | nfv | ⊢ Ⅎ 𝑎 𝑝  ∈  ( 𝐴  ×  𝐵 ) | 
						
							| 54 | 13 53 | nfan | ⊢ Ⅎ 𝑎 ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) ) | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 56 | 54 55 | nfan | ⊢ Ⅎ 𝑎 ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 ) | 
						
							| 57 |  | nfv | ⊢ Ⅎ 𝑏 𝑝  ∈  ( 𝐴  ×  𝐵 ) | 
						
							| 58 | 26 57 | nfan | ⊢ Ⅎ 𝑏 ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) ) | 
						
							| 59 |  | nfv | ⊢ Ⅎ 𝑏 𝜑 | 
						
							| 60 | 58 59 | nfan | ⊢ Ⅎ 𝑏 ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 ) | 
						
							| 61 |  | nfv | ⊢ Ⅎ 𝑎 ( 𝜑  →  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) | 
						
							| 62 |  | nfv | ⊢ Ⅎ 𝑏 ( 𝜑  →  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) | 
						
							| 63 |  | xp1st | ⊢ ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  →  ( 1st  ‘ 𝑝 )  ∈  𝐴 ) | 
						
							| 64 | 63 | ad2antlr | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( 1st  ‘ 𝑝 )  ∈  𝐴 ) | 
						
							| 65 |  | xp2nd | ⊢ ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  →  ( 2nd  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 66 | 65 | ad2antlr | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( 2nd  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 67 |  | eqcom | ⊢ ( ( 1st  ‘ 𝑝 )  =  𝑎  ↔  𝑎  =  ( 1st  ‘ 𝑝 ) ) | 
						
							| 68 |  | eqcom | ⊢ ( ( 2nd  ‘ 𝑝 )  =  𝑏  ↔  𝑏  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 69 |  | eqopi | ⊢ ( ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  ∧  ( ( 1st  ‘ 𝑝 )  =  𝑎  ∧  ( 2nd  ‘ 𝑝 )  =  𝑏 ) )  →  𝑝  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 70 | 69 1 | syl | ⊢ ( ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  ∧  ( ( 1st  ‘ 𝑝 )  =  𝑎  ∧  ( 2nd  ‘ 𝑝 )  =  𝑏 ) )  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 71 | 70 | bicomd | ⊢ ( ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  ∧  ( ( 1st  ‘ 𝑝 )  =  𝑎  ∧  ( 2nd  ‘ 𝑝 )  =  𝑏 ) )  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 72 | 71 | ancoms | ⊢ ( ( ( ( 1st  ‘ 𝑝 )  =  𝑎  ∧  ( 2nd  ‘ 𝑝 )  =  𝑏 )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( ( 1st  ‘ 𝑝 )  =  𝑎  ∧  ( 2nd  ‘ 𝑝 )  =  𝑏 )  →  ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  →  ( 𝜒  ↔  𝜑 ) ) ) | 
						
							| 74 | 67 68 73 | syl2anbr | ⊢ ( ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) )  →  ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  →  ( 𝜒  ↔  𝜑 ) ) ) | 
						
							| 75 | 74 | impcom | ⊢ ( ( 𝑝  ∈  ( 𝐴  ×  𝐵 )  ∧  ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) ) )  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 76 | 75 | ad4ant24 | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  ∧  ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) ) )  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 77 |  | simpl | ⊢ ( ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) )  →  𝑎  =  ( 1st  ‘ 𝑝 ) ) | 
						
							| 78 | 77 | eqeq1d | ⊢ ( ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) )  →  ( 𝑎  =  𝑥  ↔  ( 1st  ‘ 𝑝 )  =  𝑥 ) ) | 
						
							| 79 |  | simpr | ⊢ ( ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) )  →  𝑏  =  ( 2nd  ‘ 𝑝 ) ) | 
						
							| 80 | 79 | eqeq1d | ⊢ ( ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) )  →  ( 𝑏  =  𝑦  ↔  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) | 
						
							| 81 | 78 80 | anbi12d | ⊢ ( ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) )  →  ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  ↔  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  ∧  ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) ) )  →  ( ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 )  ↔  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) ) | 
						
							| 83 | 76 82 | imbi12d | ⊢ ( ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  ∧  ( 𝑎  =  ( 1st  ‘ 𝑝 )  ∧  𝑏  =  ( 2nd  ‘ 𝑝 ) ) )  →  ( ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) )  ↔  ( 𝜑  →  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) ) ) | 
						
							| 84 |  | simpllr | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) ) | 
						
							| 85 | 56 60 61 62 64 66 83 84 | rspc2daf | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( 𝜑  →  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) ) | 
						
							| 86 | 85 | com12 | ⊢ ( 𝜑  →  ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) ) | 
						
							| 87 | 86 | anabsi7 | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( ( 1st  ‘ 𝑝 )  =  𝑥  ∧  ( 2nd  ‘ 𝑝 )  =  𝑦 ) ) | 
						
							| 88 | 87 | simpld | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( 1st  ‘ 𝑝 )  =  𝑥 ) | 
						
							| 89 | 87 | simprd | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  ( 2nd  ‘ 𝑝 )  =  𝑦 ) | 
						
							| 90 | 88 89 | opeq12d | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 91 | 52 90 | eqtrd | ⊢ ( ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  ∧  𝜑 )  →  𝑝  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 92 | 91 | ex | ⊢ ( ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  ∧  𝑝  ∈  ( 𝐴  ×  𝐵 ) )  →  ( 𝜑  →  𝑝  =  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 93 | 92 | ralrimiva | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  ∀ 𝑝  ∈  ( 𝐴  ×  𝐵 ) ( 𝜑  →  𝑝  =  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 94 | 6 50 93 | 3jca | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ×  𝐵 )  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒  ∧  ∀ 𝑝  ∈  ( 𝐴  ×  𝐵 ) ( 𝜑  →  𝑝  =  〈 𝑥 ,  𝑦 〉 ) ) ) | 
						
							| 95 | 1 | opsbc2ie | ⊢ ( 𝑝  =  〈 𝑥 ,  𝑦 〉  →  ( 𝜑  ↔  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒 ) ) | 
						
							| 96 | 95 | eqreu | ⊢ ( ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ×  𝐵 )  ∧  [ 𝑦  /  𝑏 ] [ 𝑥  /  𝑎 ] 𝜒  ∧  ∀ 𝑝  ∈  ( 𝐴  ×  𝐵 ) ( 𝜑  →  𝑝  =  〈 𝑥 ,  𝑦 〉 ) )  →  ∃! 𝑝  ∈  ( 𝐴  ×  𝐵 ) 𝜑 ) | 
						
							| 97 | 94 96 | syl | ⊢ ( ( ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  ∃! 𝑝  ∈  ( 𝐴  ×  𝐵 ) 𝜑 ) | 
						
							| 98 | 97 | r19.29ffa | ⊢ ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ( 𝜒  →  ( 𝑎  =  𝑥  ∧  𝑏  =  𝑦 ) ) )  →  ∃! 𝑝  ∈  ( 𝐴  ×  𝐵 ) 𝜑 ) | 
						
							| 99 | 2 98 | sylbi | ⊢ ( ( ∃! 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝜒  ∧  ∃! 𝑏  ∈  𝐵 ∃ 𝑎  ∈  𝐴 𝜒 )  →  ∃! 𝑝  ∈  ( 𝐴  ×  𝐵 ) 𝜑 ) |