| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsbc2ie.a |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝜑 ↔ 𝜒 ) ) |
| 2 |
|
2reu4 |
⊢ ( ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) ↔ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ) |
| 3 |
|
simpllr |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 4 |
|
simplr |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 5 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 7 |
|
nfre1 |
⊢ Ⅎ 𝑎 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑎 𝑥 ∈ 𝐴 |
| 9 |
7 8
|
nfan |
⊢ Ⅎ 𝑎 ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑎 𝑦 ∈ 𝐵 |
| 11 |
9 10
|
nfan |
⊢ Ⅎ 𝑎 ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) |
| 12 |
|
nfra1 |
⊢ Ⅎ 𝑎 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑦 |
| 15 |
|
nfsbc1v |
⊢ Ⅎ 𝑎 [ 𝑥 / 𝑎 ] 𝜒 |
| 16 |
14 15
|
nfsbc |
⊢ Ⅎ 𝑎 [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐴 |
| 18 |
|
nfre1 |
⊢ Ⅎ 𝑏 ∃ 𝑏 ∈ 𝐵 𝜒 |
| 19 |
17 18
|
nfrexw |
⊢ Ⅎ 𝑏 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 |
| 20 |
|
nfv |
⊢ Ⅎ 𝑏 𝑥 ∈ 𝐴 |
| 21 |
19 20
|
nfan |
⊢ Ⅎ 𝑏 ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) |
| 22 |
|
nfv |
⊢ Ⅎ 𝑏 𝑦 ∈ 𝐵 |
| 23 |
21 22
|
nfan |
⊢ Ⅎ 𝑏 ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) |
| 24 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 25 |
17 24
|
nfral |
⊢ Ⅎ 𝑏 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 26 |
23 25
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑏 𝑎 ∈ 𝐴 |
| 28 |
26 27
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) |
| 29 |
28 18
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝐵 𝜒 ) |
| 30 |
|
nfsbc1v |
⊢ Ⅎ 𝑏 [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 |
| 31 |
|
rspa |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 32 |
31
|
ad5ant23 |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 33 |
|
simplr |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → 𝑏 ∈ 𝐵 ) |
| 34 |
|
simpr |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → 𝜒 ) |
| 35 |
|
rspa |
⊢ ( ( ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( ( ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 37 |
32 33 34 36
|
syl21anc |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) |
| 38 |
37
|
simprd |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → 𝑏 = 𝑦 ) |
| 39 |
37
|
simpld |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → 𝑎 = 𝑥 ) |
| 40 |
|
sbceq1a |
⊢ ( 𝑎 = 𝑥 → ( 𝜒 ↔ [ 𝑥 / 𝑎 ] 𝜒 ) ) |
| 41 |
40
|
biimpa |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝜒 ) → [ 𝑥 / 𝑎 ] 𝜒 ) |
| 42 |
39 34 41
|
syl2anc |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → [ 𝑥 / 𝑎 ] 𝜒 ) |
| 43 |
|
sbceq1a |
⊢ ( 𝑏 = 𝑦 → ( [ 𝑥 / 𝑎 ] 𝜒 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( 𝑏 = 𝑦 ∧ [ 𝑥 / 𝑎 ] 𝜒 ) → [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) |
| 45 |
38 42 44
|
syl2anc |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) |
| 46 |
45
|
adantllr |
⊢ ( ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝐵 𝜒 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝜒 ) → [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) |
| 47 |
|
simpr |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝐵 𝜒 ) → ∃ 𝑏 ∈ 𝐵 𝜒 ) |
| 48 |
29 30 46 47
|
r19.29af2 |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ ∃ 𝑏 ∈ 𝐵 𝜒 ) → [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) |
| 49 |
|
simplll |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ) |
| 50 |
13 16 48 49
|
r19.29af2 |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) |
| 51 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 52 |
51
|
ad2antlr |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 53 |
|
nfv |
⊢ Ⅎ 𝑎 𝑝 ∈ ( 𝐴 × 𝐵 ) |
| 54 |
13 53
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) |
| 55 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
| 56 |
54 55
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) |
| 57 |
|
nfv |
⊢ Ⅎ 𝑏 𝑝 ∈ ( 𝐴 × 𝐵 ) |
| 58 |
26 57
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) |
| 59 |
|
nfv |
⊢ Ⅎ 𝑏 𝜑 |
| 60 |
58 59
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝜑 → ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) |
| 62 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝜑 → ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) |
| 63 |
|
xp1st |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 1st ‘ 𝑝 ) ∈ 𝐴 ) |
| 64 |
63
|
ad2antlr |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( 1st ‘ 𝑝 ) ∈ 𝐴 ) |
| 65 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
| 66 |
65
|
ad2antlr |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
| 67 |
|
eqcom |
⊢ ( ( 1st ‘ 𝑝 ) = 𝑎 ↔ 𝑎 = ( 1st ‘ 𝑝 ) ) |
| 68 |
|
eqcom |
⊢ ( ( 2nd ‘ 𝑝 ) = 𝑏 ↔ 𝑏 = ( 2nd ‘ 𝑝 ) ) |
| 69 |
|
eqopi |
⊢ ( ( 𝑝 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( 1st ‘ 𝑝 ) = 𝑎 ∧ ( 2nd ‘ 𝑝 ) = 𝑏 ) ) → 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
| 70 |
69 1
|
syl |
⊢ ( ( 𝑝 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( 1st ‘ 𝑝 ) = 𝑎 ∧ ( 2nd ‘ 𝑝 ) = 𝑏 ) ) → ( 𝜑 ↔ 𝜒 ) ) |
| 71 |
70
|
bicomd |
⊢ ( ( 𝑝 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( 1st ‘ 𝑝 ) = 𝑎 ∧ ( 2nd ‘ 𝑝 ) = 𝑏 ) ) → ( 𝜒 ↔ 𝜑 ) ) |
| 72 |
71
|
ancoms |
⊢ ( ( ( ( 1st ‘ 𝑝 ) = 𝑎 ∧ ( 2nd ‘ 𝑝 ) = 𝑏 ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝜒 ↔ 𝜑 ) ) |
| 73 |
72
|
ex |
⊢ ( ( ( 1st ‘ 𝑝 ) = 𝑎 ∧ ( 2nd ‘ 𝑝 ) = 𝑏 ) → ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 𝜒 ↔ 𝜑 ) ) ) |
| 74 |
67 68 73
|
syl2anbr |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 𝜒 ↔ 𝜑 ) ) ) |
| 75 |
74
|
impcom |
⊢ ( ( 𝑝 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ) → ( 𝜒 ↔ 𝜑 ) ) |
| 76 |
75
|
ad4ant24 |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) ∧ ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ) → ( 𝜒 ↔ 𝜑 ) ) |
| 77 |
|
simpl |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → 𝑎 = ( 1st ‘ 𝑝 ) ) |
| 78 |
77
|
eqeq1d |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( 𝑎 = 𝑥 ↔ ( 1st ‘ 𝑝 ) = 𝑥 ) ) |
| 79 |
|
simpr |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → 𝑏 = ( 2nd ‘ 𝑝 ) ) |
| 80 |
79
|
eqeq1d |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( 𝑏 = 𝑦 ↔ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) |
| 81 |
78 80
|
anbi12d |
⊢ ( ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) → ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ↔ ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) ) |
| 82 |
81
|
adantl |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) ∧ ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ) → ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ↔ ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) ) |
| 83 |
76 82
|
imbi12d |
⊢ ( ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) ∧ ( 𝑎 = ( 1st ‘ 𝑝 ) ∧ 𝑏 = ( 2nd ‘ 𝑝 ) ) ) → ( ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ↔ ( 𝜑 → ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) ) ) |
| 84 |
|
simpllr |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) |
| 85 |
56 60 61 62 64 66 83 84
|
rspc2daf |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( 𝜑 → ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) ) |
| 86 |
85
|
com12 |
⊢ ( 𝜑 → ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) ) |
| 87 |
86
|
anabsi7 |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( ( 1st ‘ 𝑝 ) = 𝑥 ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) ) |
| 88 |
87
|
simpld |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( 1st ‘ 𝑝 ) = 𝑥 ) |
| 89 |
87
|
simprd |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → ( 2nd ‘ 𝑝 ) = 𝑦 ) |
| 90 |
88 89
|
opeq12d |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 91 |
52 90
|
eqtrd |
⊢ ( ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝜑 ) → 𝑝 = 〈 𝑥 , 𝑦 〉 ) |
| 92 |
91
|
ex |
⊢ ( ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝜑 → 𝑝 = 〈 𝑥 , 𝑦 〉 ) ) |
| 93 |
92
|
ralrimiva |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → ∀ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 𝜑 → 𝑝 = 〈 𝑥 , 𝑦 〉 ) ) |
| 94 |
6 50 93
|
3jca |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ∧ ∀ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 𝜑 → 𝑝 = 〈 𝑥 , 𝑦 〉 ) ) ) |
| 95 |
1
|
opsbc2ie |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ) ) |
| 96 |
95
|
eqreu |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜒 ∧ ∀ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 𝜑 → 𝑝 = 〈 𝑥 , 𝑦 〉 ) ) → ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ) |
| 97 |
94 96
|
syl |
⊢ ( ( ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ) |
| 98 |
97
|
r19.29ffa |
⊢ ( ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜒 → ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) ) → ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ) |
| 99 |
2 98
|
sylbi |
⊢ ( ( ∃! 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝜒 ∧ ∃! 𝑏 ∈ 𝐵 ∃ 𝑎 ∈ 𝐴 𝜒 ) → ∃! 𝑝 ∈ ( 𝐴 × 𝐵 ) 𝜑 ) |