Step |
Hyp |
Ref |
Expression |
1 |
|
opsbc2ie.a |
|- ( p = <. a , b >. -> ( ph <-> ch ) ) |
2 |
1
|
sbcth |
|- ( x e. _V -> [. x / a ]. ( p = <. a , b >. -> ( ph <-> ch ) ) ) |
3 |
|
sbcim1 |
|- ( [. x / a ]. ( p = <. a , b >. -> ( ph <-> ch ) ) -> ( [. x / a ]. p = <. a , b >. -> [. x / a ]. ( ph <-> ch ) ) ) |
4 |
2 3
|
syl |
|- ( x e. _V -> ( [. x / a ]. p = <. a , b >. -> [. x / a ]. ( ph <-> ch ) ) ) |
5 |
|
sbceq2g |
|- ( x e. _V -> ( [. x / a ]. p = <. a , b >. <-> p = [_ x / a ]_ <. a , b >. ) ) |
6 |
|
csbopg |
|- ( x e. _V -> [_ x / a ]_ <. a , b >. = <. [_ x / a ]_ a , [_ x / a ]_ b >. ) |
7 |
|
csbvarg |
|- ( x e. _V -> [_ x / a ]_ a = x ) |
8 |
|
csbconstg |
|- ( x e. _V -> [_ x / a ]_ b = b ) |
9 |
7 8
|
opeq12d |
|- ( x e. _V -> <. [_ x / a ]_ a , [_ x / a ]_ b >. = <. x , b >. ) |
10 |
6 9
|
eqtrd |
|- ( x e. _V -> [_ x / a ]_ <. a , b >. = <. x , b >. ) |
11 |
10
|
eqeq2d |
|- ( x e. _V -> ( p = [_ x / a ]_ <. a , b >. <-> p = <. x , b >. ) ) |
12 |
5 11
|
bitrd |
|- ( x e. _V -> ( [. x / a ]. p = <. a , b >. <-> p = <. x , b >. ) ) |
13 |
|
sbcbig |
|- ( x e. _V -> ( [. x / a ]. ( ph <-> ch ) <-> ( [. x / a ]. ph <-> [. x / a ]. ch ) ) ) |
14 |
|
sbcg |
|- ( x e. _V -> ( [. x / a ]. ph <-> ph ) ) |
15 |
14
|
bibi1d |
|- ( x e. _V -> ( ( [. x / a ]. ph <-> [. x / a ]. ch ) <-> ( ph <-> [. x / a ]. ch ) ) ) |
16 |
13 15
|
bitrd |
|- ( x e. _V -> ( [. x / a ]. ( ph <-> ch ) <-> ( ph <-> [. x / a ]. ch ) ) ) |
17 |
4 12 16
|
3imtr3d |
|- ( x e. _V -> ( p = <. x , b >. -> ( ph <-> [. x / a ]. ch ) ) ) |
18 |
17
|
elv |
|- ( p = <. x , b >. -> ( ph <-> [. x / a ]. ch ) ) |
19 |
18
|
sbcth |
|- ( y e. _V -> [. y / b ]. ( p = <. x , b >. -> ( ph <-> [. x / a ]. ch ) ) ) |
20 |
|
sbcim1 |
|- ( [. y / b ]. ( p = <. x , b >. -> ( ph <-> [. x / a ]. ch ) ) -> ( [. y / b ]. p = <. x , b >. -> [. y / b ]. ( ph <-> [. x / a ]. ch ) ) ) |
21 |
19 20
|
syl |
|- ( y e. _V -> ( [. y / b ]. p = <. x , b >. -> [. y / b ]. ( ph <-> [. x / a ]. ch ) ) ) |
22 |
|
sbceq2g |
|- ( y e. _V -> ( [. y / b ]. p = <. x , b >. <-> p = [_ y / b ]_ <. x , b >. ) ) |
23 |
|
csbopg |
|- ( y e. _V -> [_ y / b ]_ <. x , b >. = <. [_ y / b ]_ x , [_ y / b ]_ b >. ) |
24 |
|
csbconstg |
|- ( y e. _V -> [_ y / b ]_ x = x ) |
25 |
|
csbvarg |
|- ( y e. _V -> [_ y / b ]_ b = y ) |
26 |
24 25
|
opeq12d |
|- ( y e. _V -> <. [_ y / b ]_ x , [_ y / b ]_ b >. = <. x , y >. ) |
27 |
23 26
|
eqtrd |
|- ( y e. _V -> [_ y / b ]_ <. x , b >. = <. x , y >. ) |
28 |
27
|
eqeq2d |
|- ( y e. _V -> ( p = [_ y / b ]_ <. x , b >. <-> p = <. x , y >. ) ) |
29 |
22 28
|
bitrd |
|- ( y e. _V -> ( [. y / b ]. p = <. x , b >. <-> p = <. x , y >. ) ) |
30 |
|
sbcbig |
|- ( y e. _V -> ( [. y / b ]. ( ph <-> [. x / a ]. ch ) <-> ( [. y / b ]. ph <-> [. y / b ]. [. x / a ]. ch ) ) ) |
31 |
|
sbcg |
|- ( y e. _V -> ( [. y / b ]. ph <-> ph ) ) |
32 |
31
|
bibi1d |
|- ( y e. _V -> ( ( [. y / b ]. ph <-> [. y / b ]. [. x / a ]. ch ) <-> ( ph <-> [. y / b ]. [. x / a ]. ch ) ) ) |
33 |
30 32
|
bitrd |
|- ( y e. _V -> ( [. y / b ]. ( ph <-> [. x / a ]. ch ) <-> ( ph <-> [. y / b ]. [. x / a ]. ch ) ) ) |
34 |
21 29 33
|
3imtr3d |
|- ( y e. _V -> ( p = <. x , y >. -> ( ph <-> [. y / b ]. [. x / a ]. ch ) ) ) |
35 |
34
|
elv |
|- ( p = <. x , y >. -> ( ph <-> [. y / b ]. [. x / a ]. ch ) ) |