Metamath Proof Explorer


Theorem opthprneg

Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. Variant of opthpr in closed form. (Contributed by AV, 13-Jun-2022)

Ref Expression
Assertion opthprneg AVBWABADAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 preq12bg AVBWCVDVAB=CDA=CB=DA=DB=C
2 1 adantlr AVBWABADCVDVAB=CDA=CB=DA=DB=C
3 idd ADA=CB=DA=CB=D
4 df-ne AD¬A=D
5 pm2.21 ¬A=DA=DB=CA=CB=D
6 4 5 sylbi ADA=DB=CA=CB=D
7 6 impd ADA=DB=CA=CB=D
8 3 7 jaod ADA=CB=DA=DB=CA=CB=D
9 orc A=CB=DA=CB=DA=DB=C
10 8 9 impbid1 ADA=CB=DA=DB=CA=CB=D
11 10 adantl ABADA=CB=DA=DB=CA=CB=D
12 11 ad2antlr AVBWABADCVDVA=CB=DA=DB=CA=CB=D
13 2 12 bitrd AVBWABADCVDVAB=CDA=CB=D
14 13 expcom CVDVAVBWABADAB=CDA=CB=D
15 ianor ¬CVDV¬CV¬DV
16 simpl ABADAB
17 16 anim2i AVBWABADAVBWAB
18 df-3an AVBWABAVBWAB
19 17 18 sylibr AVBWABADAVBWAB
20 prneprprc AVBWAB¬CVABCD
21 19 20 sylan AVBWABAD¬CVABCD
22 21 ancoms ¬CVAVBWABADABCD
23 eqneqall AB=CDABCDA=CB=D
24 22 23 syl5com ¬CVAVBWABADAB=CDA=CB=D
25 prneprprc AVBWAB¬DVABDC
26 19 25 sylan AVBWABAD¬DVABDC
27 26 ancoms ¬DVAVBWABADABDC
28 prcom CD=DC
29 28 eqeq2i AB=CDAB=DC
30 eqneqall AB=DCABDCA=CB=D
31 29 30 sylbi AB=CDABDCA=CB=D
32 27 31 syl5com ¬DVAVBWABADAB=CDA=CB=D
33 24 32 jaoian ¬CV¬DVAVBWABADAB=CDA=CB=D
34 preq12 A=CB=DAB=CD
35 33 34 impbid1 ¬CV¬DVAVBWABADAB=CDA=CB=D
36 35 ex ¬CV¬DVAVBWABADAB=CDA=CB=D
37 15 36 sylbi ¬CVDVAVBWABADAB=CDA=CB=D
38 14 37 pm2.61i AVBWABADAB=CDA=CB=D