Metamath Proof Explorer


Theorem orbstaval

Description: Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses gasta.1 X=BaseG
gasta.2 H=uX|u˙A=A
orbsta.r ˙=G~QGH
orbsta.f F=rankXk˙k˙A
Assertion orbstaval ˙GGrpActYAYBXFB˙=B˙A

Proof

Step Hyp Ref Expression
1 gasta.1 X=BaseG
2 gasta.2 H=uX|u˙A=A
3 orbsta.r ˙=G~QGH
4 orbsta.f F=rankXk˙k˙A
5 ovexd ˙GGrpActYAYkXk˙AV
6 1 2 gastacl ˙GGrpActYAYHSubGrpG
7 1 3 eqger HSubGrpG˙ErX
8 6 7 syl ˙GGrpActYAY˙ErX
9 1 fvexi XV
10 9 a1i ˙GGrpActYAYXV
11 oveq1 k=Bk˙A=B˙A
12 1 2 3 4 orbstafun ˙GGrpActYAYFunF
13 4 5 8 10 11 12 qliftval ˙GGrpActYAYBXFB˙=B˙A