Metamath Proof Explorer


Theorem ordsuc

Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995) Avoid ax-un . (Revised by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion ordsuc OrdAOrdsucA

Proof

Step Hyp Ref Expression
1 ordsuci OrdAOrdsucA
2 sucidg AVAsucA
3 ordelord OrdsucAAsucAOrdA
4 3 ex OrdsucAAsucAOrdA
5 2 4 syl5com AVOrdsucAOrdA
6 sucprc ¬AVsucA=A
7 6 eqcomd ¬AVA=sucA
8 ordeq A=sucAOrdAOrdsucA
9 7 8 syl ¬AVOrdAOrdsucA
10 9 biimprd ¬AVOrdsucAOrdA
11 5 10 pm2.61i OrdsucAOrdA
12 1 11 impbii OrdAOrdsucA