Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995) Avoid ax-un . (Revised by BTernaryTau, 6-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ordsuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuci | |
|
2 | sucidg | |
|
3 | ordelord | |
|
4 | 3 | ex | |
5 | 2 4 | syl5com | |
6 | sucprc | |
|
7 | 6 | eqcomd | |
8 | ordeq | |
|
9 | 7 8 | syl | |
10 | 9 | biimprd | |
11 | 5 10 | pm2.61i | |
12 | 1 11 | impbii | |