Metamath Proof Explorer


Theorem ordsucOLD

Description: Obsolete version of ordsuc as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ordsucOLD OrdAOrdsucA

Proof

Step Hyp Ref Expression
1 elong AVAOnOrdA
2 onsuc AOnsucAOn
3 eloni sucAOnOrdsucA
4 2 3 syl AOnOrdsucA
5 1 4 syl6bir AVOrdAOrdsucA
6 sucidg AVAsucA
7 ordelord OrdsucAAsucAOrdA
8 7 ex OrdsucAAsucAOrdA
9 6 8 syl5com AVOrdsucAOrdA
10 5 9 impbid AVOrdAOrdsucA
11 sucprc ¬AVsucA=A
12 11 eqcomd ¬AVA=sucA
13 ordeq A=sucAOrdAOrdsucA
14 12 13 syl ¬AVOrdAOrdsucA
15 10 14 pm2.61i OrdAOrdsucA