Metamath Proof Explorer


Theorem ordpwsuc

Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005)

Ref Expression
Assertion ordpwsuc Ord A 𝒫 A On = suc A

Proof

Step Hyp Ref Expression
1 elin x 𝒫 A On x 𝒫 A x On
2 velpw x 𝒫 A x A
3 2 anbi2ci x 𝒫 A x On x On x A
4 1 3 bitri x 𝒫 A On x On x A
5 ordsssuc x On Ord A x A x suc A
6 5 expcom Ord A x On x A x suc A
7 6 pm5.32d Ord A x On x A x On x suc A
8 simpr x On x suc A x suc A
9 ordsuc Ord A Ord suc A
10 ordelon Ord suc A x suc A x On
11 10 ex Ord suc A x suc A x On
12 9 11 sylbi Ord A x suc A x On
13 12 ancrd Ord A x suc A x On x suc A
14 8 13 impbid2 Ord A x On x suc A x suc A
15 7 14 bitrd Ord A x On x A x suc A
16 4 15 bitrid Ord A x 𝒫 A On x suc A
17 16 eqrdv Ord A 𝒫 A On = suc A