Metamath Proof Explorer


Theorem ordtopconn

Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtopconn OrdJJTopJConn

Proof

Step Hyp Ref Expression
1 ordtop OrdJJTopJJ
2 onsucconn JOnsucJConn
3 2 ordtoplem OrdJJJJConn
4 1 3 sylbid OrdJJTopJConn
5 conntop JConnJTop
6 4 5 impbid1 OrdJJTopJConn