Metamath Proof Explorer


Theorem osumcllem6N

Description: Lemma for osumclN . Use atom exchange hlatexch1 to swap p and q . (Contributed by NM, 24-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙=K
osumcllem.j ˙=joinK
osumcllem.a A=AtomsK
osumcllem.p +˙=+𝑃K
osumcllem.o ˙=𝑃K
osumcllem.c C=PSubClK
osumcllem.m M=X+˙p
osumcllem.u U=˙˙X+˙Y
Assertion osumcllem6N KHLXAYAX˙YpArXqYq˙r˙ppX+˙Y

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙=K
2 osumcllem.j ˙=joinK
3 osumcllem.a A=AtomsK
4 osumcllem.p +˙=+𝑃K
5 osumcllem.o ˙=𝑃K
6 osumcllem.c C=PSubClK
7 osumcllem.m M=X+˙p
8 osumcllem.u U=˙˙X+˙Y
9 simp11 KHLXAYAX˙YpArXqYq˙r˙pKHL
10 simp12 KHLXAYAX˙YpArXqYq˙r˙pXA
11 simp13 KHLXAYAX˙YpArXqYq˙r˙pYA
12 simp2r KHLXAYAX˙YpArXqYq˙r˙ppA
13 simp31 KHLXAYAX˙YpArXqYq˙r˙prX
14 simp32 KHLXAYAX˙YpArXqYq˙r˙pqY
15 11 14 sseldd KHLXAYAX˙YpArXqYq˙r˙pqA
16 10 13 sseldd KHLXAYAX˙YpArXqYq˙r˙prA
17 15 12 16 3jca KHLXAYAX˙YpArXqYq˙r˙pqApArA
18 simp2l KHLXAYAX˙YpArXqYq˙r˙pX˙Y
19 1 2 3 4 5 6 7 8 osumcllem4N KHLYAX˙YrXqYqr
20 9 11 18 13 14 19 syl32anc KHLXAYAX˙YpArXqYq˙r˙pqr
21 9 17 20 3jca KHLXAYAX˙YpArXqYq˙r˙pKHLqApArAqr
22 simp33 KHLXAYAX˙YpArXqYq˙r˙pq˙r˙p
23 1 2 3 hlatexch1 KHLqApArAqrq˙r˙pp˙r˙q
24 21 22 23 sylc KHLXAYAX˙YpArXqYq˙r˙pp˙r˙q
25 1 2 3 4 5 6 7 8 osumcllem5N KHLXAYApArXqYp˙r˙qpX+˙Y
26 9 10 11 12 13 14 24 25 syl313anc KHLXAYAX˙YpArXqYq˙r˙ppX+˙Y