Metamath Proof Explorer


Theorem partim2

Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim . Lemma for petlem . (Contributed by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion partim2 DisjRdomR/R=AEqvRelRdomR/R=A

Proof

Step Hyp Ref Expression
1 disjim DisjREqvRelR
2 1 adantr DisjRdomR/R=AEqvRelR
3 disjdmqseq DisjRdomR/R=AdomR/R=A
4 3 biimpa DisjRdomR/R=AdomR/R=A
5 2 4 jca DisjRdomR/R=AEqvRelRdomR/R=A