Metamath Proof Explorer


Theorem pclbtwnN

Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclid.s S=PSubSpK
pclid.c U=PClK
Assertion pclbtwnN KVXSYXXUYX=UY

Proof

Step Hyp Ref Expression
1 pclid.s S=PSubSpK
2 pclid.c U=PClK
3 simprr KVXSYXXUYXUY
4 simpll KVXSYXXUYKV
5 simprl KVXSYXXUYYX
6 eqid AtomsK=AtomsK
7 6 1 psubssat KVXSXAtomsK
8 7 adantr KVXSYXXUYXAtomsK
9 6 2 pclssN KVYXXAtomsKUYUX
10 4 5 8 9 syl3anc KVXSYXXUYUYUX
11 1 2 pclidN KVXSUX=X
12 11 adantr KVXSYXXUYUX=X
13 10 12 sseqtrd KVXSYXXUYUYX
14 3 13 eqssd KVXSYXXUYX=UY