Metamath Proof Explorer


Theorem pclunN

Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclun.a A=AtomsK
pclun.p +˙=+𝑃K
pclun.c U=PClK
Assertion pclunN KVXAYAUXY=UX+˙Y

Proof

Step Hyp Ref Expression
1 pclun.a A=AtomsK
2 pclun.p +˙=+𝑃K
3 pclun.c U=PClK
4 simp1 KVXAYAKV
5 1 2 paddunssN KVXAYAXYX+˙Y
6 1 2 paddssat KVXAYAX+˙YA
7 1 3 pclssN KVXYX+˙YX+˙YAUXYUX+˙Y
8 4 5 6 7 syl3anc KVXAYAUXYUX+˙Y
9 unss XAYAXYA
10 9 biimpi XAYAXYA
11 10 3adant1 KVXAYAXYA
12 1 3 pclssidN KVXYAXYUXY
13 4 11 12 syl2anc KVXAYAXYUXY
14 unss XUXYYUXYXYUXY
15 13 14 sylibr KVXAYAXUXYYUXY
16 simp2 KVXAYAXA
17 simp3 KVXAYAYA
18 eqid PSubSpK=PSubSpK
19 1 18 3 pclclN KVXYAUXYPSubSpK
20 4 11 19 syl2anc KVXAYAUXYPSubSpK
21 1 18 2 paddss KVXAYAUXYPSubSpKXUXYYUXYX+˙YUXY
22 4 16 17 20 21 syl13anc KVXAYAXUXYYUXYX+˙YUXY
23 15 22 mpbid KVXAYAX+˙YUXY
24 1 18 psubssat KVUXYPSubSpKUXYA
25 4 20 24 syl2anc KVXAYAUXYA
26 1 3 pclssN KVX+˙YUXYUXYAUX+˙YUUXY
27 4 23 25 26 syl3anc KVXAYAUX+˙YUUXY
28 18 3 pclidN KVUXYPSubSpKUUXY=UXY
29 4 20 28 syl2anc KVXAYAUUXY=UXY
30 27 29 sseqtrd KVXAYAUX+˙YUXY
31 8 30 eqssd KVXAYAUXY=UX+˙Y