Metamath Proof Explorer


Theorem pclfvalN

Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a A=AtomsK
pclfval.s S=PSubSpK
pclfval.c U=PClK
Assertion pclfvalN KVU=x𝒫AyS|xy

Proof

Step Hyp Ref Expression
1 pclfval.a A=AtomsK
2 pclfval.s S=PSubSpK
3 pclfval.c U=PClK
4 elex KVKV
5 fveq2 k=KAtomsk=AtomsK
6 5 1 eqtr4di k=KAtomsk=A
7 6 pweqd k=K𝒫Atomsk=𝒫A
8 fveq2 k=KPSubSpk=PSubSpK
9 8 2 eqtr4di k=KPSubSpk=S
10 9 rabeqdv k=KyPSubSpk|xy=yS|xy
11 10 inteqd k=KyPSubSpk|xy=yS|xy
12 7 11 mpteq12dv k=Kx𝒫AtomskyPSubSpk|xy=x𝒫AyS|xy
13 df-pclN PCl=kVx𝒫AtomskyPSubSpk|xy
14 1 fvexi AV
15 14 pwex 𝒫AV
16 15 mptex x𝒫AyS|xyV
17 12 13 16 fvmpt KVPClK=x𝒫AyS|xy
18 3 17 eqtrid KVU=x𝒫AyS|xy
19 4 18 syl KVU=x𝒫AyS|xy