Metamath Proof Explorer


Theorem peano2uzr

Description: Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006)

Ref Expression
Assertion peano2uzr MNM+1NM

Proof

Step Hyp Ref Expression
1 eluzelcn NM+1N
2 ax-1cn 1
3 npcan N1N-1+1=N
4 1 2 3 sylancl NM+1N-1+1=N
5 4 adantl MNM+1N-1+1=N
6 eluzp1m1 MNM+1N1M
7 peano2uz N1MN-1+1M
8 6 7 syl MNM+1N-1+1M
9 5 8 eqeltrrd MNM+1NM