Database
BASIC TOPOLOGY
Topology
Limit points and perfect sets
perfi
Next ⟩
perftop
Metamath Proof Explorer
Ascii
Unicode
Theorem
perfi
Description:
Property of a perfect space.
(Contributed by
Mario Carneiro
, 24-Dec-2016)
Ref
Expression
Hypothesis
lpfval.1
⊢
X
=
⋃
J
Assertion
perfi
⊢
J
∈
Perf
∧
P
∈
X
→
¬
P
∈
J
Proof
Step
Hyp
Ref
Expression
1
lpfval.1
⊢
X
=
⋃
J
2
1
isperf3
⊢
J
∈
Perf
↔
J
∈
Top
∧
∀
x
∈
X
¬
x
∈
J
3
2
simprbi
⊢
J
∈
Perf
→
∀
x
∈
X
¬
x
∈
J
4
sneq
⊢
x
=
P
→
x
=
P
5
4
eleq1d
⊢
x
=
P
→
x
∈
J
↔
P
∈
J
6
5
notbid
⊢
x
=
P
→
¬
x
∈
J
↔
¬
P
∈
J
7
6
rspccva
⊢
∀
x
∈
X
¬
x
∈
J
∧
P
∈
X
→
¬
P
∈
J
8
3
7
sylan
⊢
J
∈
Perf
∧
P
∈
X
→
¬
P
∈
J