Metamath Proof Explorer


Theorem pets

Description: Partition-Equivalence Theorem with general R , with binary relations. This theorem (together with pet and pet2 ) is the main result of my investigation into set theory, cf. the comment of pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion pets A V R W R E -1 A Parts A R E -1 A Ers A

Proof

Step Hyp Ref Expression
1 pet R E -1 A Part A R E -1 A ErALTV A
2 xrncnvepresex A V R W R E -1 A V
3 brpartspart A V R E -1 A V R E -1 A Parts A R E -1 A Part A
4 2 3 syldan A V R W R E -1 A Parts A R E -1 A Part A
5 1cossxrncnvepresex A V R W R E -1 A V
6 brerser A V R E -1 A V R E -1 A Ers A R E -1 A ErALTV A
7 5 6 syldan A V R W R E -1 A Ers A R E -1 A ErALTV A
8 4 7 bibi12d A V R W R E -1 A Parts A R E -1 A Ers A R E -1 A Part A R E -1 A ErALTV A
9 1 8 mpbiri A V R W R E -1 A Parts A R E -1 A Ers A