Metamath Proof Explorer


Theorem pets

Description: Partition-Equivalence Theorem with general R , with binary relations. This theorem (together with pet and pet2 ) is the main result of my investigation into set theory, cf. the comment of pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion pets Could not format assertion : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 pet Could not format ( ( R |X. ( `' _E |` A ) ) Part A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) : No typesetting found for |- ( ( R |X. ( `' _E |` A ) ) Part A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) with typecode |-
2 xrncnvepresex AVRWRE-1AV
3 brpartspart Could not format ( ( A e. V /\ ( R |X. ( `' _E |` A ) ) e. _V ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ( R |X. ( `' _E |` A ) ) Part A ) ) : No typesetting found for |- ( ( A e. V /\ ( R |X. ( `' _E |` A ) ) e. _V ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ( R |X. ( `' _E |` A ) ) Part A ) ) with typecode |-
4 2 3 syldan Could not format ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ( R |X. ( `' _E |` A ) ) Part A ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ( R |X. ( `' _E |` A ) ) Part A ) ) with typecode |-
5 1cossxrncnvepresex AVRWRE-1AV
6 brerser AVRE-1AVRE-1AErsARE-1AErALTVA
7 5 6 syldan AVRWRE-1AErsARE-1AErALTVA
8 4 7 bibi12d Could not format ( ( A e. V /\ R e. W ) -> ( ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) <-> ( ( R |X. ( `' _E |` A ) ) Part A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) <-> ( ( R |X. ( `' _E |` A ) ) Part A <-> ,~ ( R |X. ( `' _E |` A ) ) ErALTV A ) ) ) with typecode |-
9 1 8 mpbiri Could not format ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( ( R |X. ( `' _E |` A ) ) Parts A <-> ,~ ( R |X. ( `' _E |` A ) ) Ers A ) ) with typecode |-