Metamath Proof Explorer


Theorem pfxid

Description: A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015) (Revised by AV, 2-May-2020)

Ref Expression
Assertion pfxid SWordASprefixS=S

Proof

Step Hyp Ref Expression
1 lencl SWordAS0
2 nn0fz0 S0S0S
3 1 2 sylib SWordAS0S
4 pfxf SWordAS0SSprefixS:0..^SA
5 3 4 mpdan SWordASprefixS:0..^SA
6 5 ffnd SWordASprefixSFn0..^S
7 wrdfn SWordASFn0..^S
8 simpl SWordAx0..^SSWordA
9 3 adantr SWordAx0..^SS0S
10 simpr SWordAx0..^Sx0..^S
11 pfxfv SWordAS0Sx0..^SSprefixSx=Sx
12 8 9 10 11 syl3anc SWordAx0..^SSprefixSx=Sx
13 6 7 12 eqfnfvd SWordASprefixS=S