Metamath Proof Explorer


Theorem pfxlswccat

Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion pfxlswccat WWordVWWprefixW1++⟨“lastSW”⟩=W

Proof

Step Hyp Ref Expression
1 swrdlsw WWordVWWsubstrW1W=⟨“lastSW”⟩
2 1 eqcomd WWordVW⟨“lastSW”⟩=WsubstrW1W
3 2 oveq2d WWordVWWprefixW1++⟨“lastSW”⟩=WprefixW1++WsubstrW1W
4 wrdfin WWordVWFin
5 1elfz0hash WFinW10W
6 4 5 sylan WWordVW10W
7 fznn0sub2 10WW10W
8 6 7 syl WWordVWW10W
9 pfxcctswrd WWordVW10WWprefixW1++WsubstrW1W=W
10 8 9 syldan WWordVWWprefixW1++WsubstrW1W=W
11 3 10 eqtrd WWordVWWprefixW1++⟨“lastSW”⟩=W