Metamath Proof Explorer


Theorem pgind

Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024)

Ref Expression
Hypotheses pgind.1 x=yψχ
pgind.2 y=Aχθ
pgind.3 φxy1stx2ndxχψ
Assertion pgind φAPgθ

Proof

Step Hyp Ref Expression
1 pgind.1 x=yψχ
2 pgind.2 y=Aχθ
3 pgind.3 φxy1stx2ndxχψ
4 19.8a φyφ
5 19.8a yφxyφ
6 nfe1 xxyφ
7 nfe1 yyφ
8 7 nfex yxyφ
9 nfa1 xxy1stx2ndxχψ
10 nfra1 yy1stx2ndxχ
11 nfv yψ
12 10 11 nfim yy1stx2ndxχψ
13 12 nfal yxy1stx2ndxχψ
14 13 3 exlimi yφxy1stx2ndxχψ
15 9 14 exlimi xyφxy1stx2ndxχψ
16 6 8 1 2 15 pgindnf xyφAPgθ
17 4 5 16 3syl φAPgθ