Metamath Proof Explorer


Theorem pimgtmnf

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimgtmnf.1 x φ
pimgtmnf.2 φ x A B
Assertion pimgtmnf φ x A | −∞ < B = A

Proof

Step Hyp Ref Expression
1 pimgtmnf.1 x φ
2 pimgtmnf.2 φ x A B
3 nfcv _ x A
4 1 3 2 pimgtmnff φ x A | −∞ < B = A