Metamath Proof Explorer


Theorem pjaddi

Description: Projection of vector sum is sum of projections. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjadjt.1 HC
Assertion pjaddi ABprojHA+B=projHA+projHB

Proof

Step Hyp Ref Expression
1 pjadjt.1 HC
2 fvoveq1 A=ifAA0projHA+B=projHifAA0+B
3 fveq2 A=ifAA0projHA=projHifAA0
4 3 oveq1d A=ifAA0projHA+projHB=projHifAA0+projHB
5 2 4 eqeq12d A=ifAA0projHA+B=projHA+projHBprojHifAA0+B=projHifAA0+projHB
6 oveq2 B=ifBB0ifAA0+B=ifAA0+ifBB0
7 6 fveq2d B=ifBB0projHifAA0+B=projHifAA0+ifBB0
8 fveq2 B=ifBB0projHB=projHifBB0
9 8 oveq2d B=ifBB0projHifAA0+projHB=projHifAA0+projHifBB0
10 7 9 eqeq12d B=ifBB0projHifAA0+B=projHifAA0+projHBprojHifAA0+ifBB0=projHifAA0+projHifBB0
11 ifhvhv0 ifAA0
12 ifhvhv0 ifBB0
13 1 11 12 pjaddii projHifAA0+ifBB0=projHifAA0+projHifBB0
14 5 10 13 dedth2h ABprojHA+B=projHA+projHB