Metamath Proof Explorer


Theorem pjcocli

Description: Closure of composition of projections. (Contributed by NM, 29-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjcocli AprojGprojHAG

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 1 2 pjcoi AprojGprojHA=projGprojHA
4 2 pjhcli AprojHA
5 1 pjcli projHAprojGprojHAG
6 4 5 syl AprojGprojHAG
7 3 6 eqeltrd AprojGprojHAG