Metamath Proof Explorer


Theorem pjddii

Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 24-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsdi.1 HC
pjsdi.2 S:
pjsdi.3 T:
Assertion pjddii projHS-opT=projHS-opprojHT

Proof

Step Hyp Ref Expression
1 pjsdi.1 HC
2 pjsdi.2 S:
3 pjsdi.3 T:
4 2 ffvelcdmi xSx
5 3 ffvelcdmi xTx
6 1 pjsubi SxTxprojHSx-Tx=projHSx-projHTx
7 4 5 6 syl2anc xprojHSx-Tx=projHSx-projHTx
8 hodval S:T:xS-opTx=Sx-Tx
9 2 3 8 mp3an12 xS-opTx=Sx-Tx
10 9 fveq2d xprojHS-opTx=projHSx-Tx
11 1 pjfi projH:
12 11 2 hocoi xprojHSx=projHSx
13 11 3 hocoi xprojHTx=projHTx
14 12 13 oveq12d xprojHSx-projHTx=projHSx-projHTx
15 7 10 14 3eqtr4d xprojHS-opTx=projHSx-projHTx
16 2 3 hosubcli S-opT:
17 11 16 hocoi xprojHS-opTx=projHS-opTx
18 11 2 hocofi projHS:
19 11 3 hocofi projHT:
20 hodval projHS:projHT:xprojHS-opprojHTx=projHSx-projHTx
21 18 19 20 mp3an12 xprojHS-opprojHTx=projHSx-projHTx
22 15 17 21 3eqtr4d xprojHS-opTx=projHS-opprojHTx
23 22 rgen xprojHS-opTx=projHS-opprojHTx
24 11 16 hocofi projHS-opT:
25 18 19 hosubcli projHS-opprojHT:
26 24 25 hoeqi xprojHS-opTx=projHS-opprojHTxprojHS-opT=projHS-opprojHT
27 23 26 mpbi projHS-opT=projHS-opprojHT