Metamath Proof Explorer


Theorem pjhtheu2

Description: Uniqueness of y for the projection theorem. (Contributed by NM, 6-Nov-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhtheu2 H C A ∃! y H x H A = x + y

Proof

Step Hyp Ref Expression
1 choccl H C H C
2 pjhtheu H C A ∃! y H x H A = y + x
3 1 2 sylan H C A ∃! y H x H A = y + x
4 simpll H C A y H H C
5 ococ H C H = H
6 4 5 syl H C A y H H = H
7 6 rexeqdv H C A y H x H A = y + x x H A = y + x
8 1 adantr H C A H C
9 chel H C y H y
10 8 9 sylan H C A y H y
11 10 adantr H C A y H x H y
12 chel H C x H x
13 4 12 sylan H C A y H x H x
14 ax-hvcom y x y + x = x + y
15 11 13 14 syl2anc H C A y H x H y + x = x + y
16 15 eqeq2d H C A y H x H A = y + x A = x + y
17 16 rexbidva H C A y H x H A = y + x x H A = x + y
18 7 17 bitrd H C A y H x H A = y + x x H A = x + y
19 18 reubidva H C A ∃! y H x H A = y + x ∃! y H x H A = x + y
20 3 19 mpbid H C A ∃! y H x H A = x + y