Metamath Proof Explorer


Theorem pjoccoi

Description: Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 HC
Assertion pjoccoi projHprojH=0hop

Proof

Step Hyp Ref Expression
1 pjidmco.1 HC
2 1 chssii H
3 ococss HHH
4 1 choccli HC
5 1 4 pjorthcoi HHprojHprojH=0hop
6 2 3 5 mp2b projHprojH=0hop