Metamath Proof Explorer


Theorem pjop

Description: Orthocomplement projection in terms of projection. (Contributed by NM, 5-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjop HCAprojHA=A-projHA

Proof

Step Hyp Ref Expression
1 axpjpj HCAA=projHA+projHA
2 1 eqcomd HCAprojHA+projHA=A
3 simpr HCAA
4 pjhcl HCAprojHA
5 choccl HCHC
6 pjhcl HCAprojHA
7 5 6 sylan HCAprojHA
8 hvsubadd AprojHAprojHAA-projHA=projHAprojHA+projHA=A
9 3 4 7 8 syl3anc HCAA-projHA=projHAprojHA+projHA=A
10 2 9 mpbird HCAA-projHA=projHA
11 10 eqcomd HCAprojHA=A-projHA