Metamath Proof Explorer


Theorem pjpyth

Description: Pythagorean theorem for projectors. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjpyth HCAnormA2=normprojHA2+normprojHA2

Proof

Step Hyp Ref Expression
1 fveq2 H=ifHCHprojH=projifHCH
2 1 fveq1d H=ifHCHprojHA=projifHCHA
3 2 fveq2d H=ifHCHnormprojHA=normprojifHCHA
4 3 oveq1d H=ifHCHnormprojHA2=normprojifHCHA2
5 2fveq3 H=ifHCHprojH=projifHCH
6 5 fveq1d H=ifHCHprojHA=projifHCHA
7 6 fveq2d H=ifHCHnormprojHA=normprojifHCHA
8 7 oveq1d H=ifHCHnormprojHA2=normprojifHCHA2
9 4 8 oveq12d H=ifHCHnormprojHA2+normprojHA2=normprojifHCHA2+normprojifHCHA2
10 9 eqeq2d H=ifHCHnormA2=normprojHA2+normprojHA2normA2=normprojifHCHA2+normprojifHCHA2
11 fveq2 A=ifAA0normA=normifAA0
12 11 oveq1d A=ifAA0normA2=normifAA02
13 2fveq3 A=ifAA0normprojifHCHA=normprojifHCHifAA0
14 13 oveq1d A=ifAA0normprojifHCHA2=normprojifHCHifAA02
15 2fveq3 A=ifAA0normprojifHCHA=normprojifHCHifAA0
16 15 oveq1d A=ifAA0normprojifHCHA2=normprojifHCHifAA02
17 14 16 oveq12d A=ifAA0normprojifHCHA2+normprojifHCHA2=normprojifHCHifAA02+normprojifHCHifAA02
18 12 17 eqeq12d A=ifAA0normA2=normprojifHCHA2+normprojifHCHA2normifAA02=normprojifHCHifAA02+normprojifHCHifAA02
19 ifchhv ifHCHC
20 ifhvhv0 ifAA0
21 19 20 pjpythi normifAA02=normprojifHCHifAA02+normprojifHCHifAA02
22 10 18 21 dedth2h HCAnormA2=normprojHA2+normprojHA2