Metamath Proof Explorer


Theorem pjssge0i

Description: Theorem 4.5(iv)->(v) of Beran p. 112. (Contributed by NM, 26-Sep-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjssge0i AprojGA-projHA=projGHA0projGA-projHAihA

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 fveq2 A=ifAA0projGA=projGifAA0
4 fveq2 A=ifAA0projHA=projHifAA0
5 3 4 oveq12d A=ifAA0projGA-projHA=projGifAA0-projHifAA0
6 fveq2 A=ifAA0projGHA=projGHifAA0
7 5 6 eqeq12d A=ifAA0projGA-projHA=projGHAprojGifAA0-projHifAA0=projGHifAA0
8 id A=ifAA0A=ifAA0
9 5 8 oveq12d A=ifAA0projGA-projHAihA=projGifAA0-projHifAA0ihifAA0
10 9 breq2d A=ifAA00projGA-projHAihA0projGifAA0-projHifAA0ihifAA0
11 7 10 imbi12d A=ifAA0projGA-projHA=projGHA0projGA-projHAihAprojGifAA0-projHifAA0=projGHifAA00projGifAA0-projHifAA0ihifAA0
12 ifhvhv0 ifAA0
13 2 12 1 pjssge0ii projGifAA0-projHifAA0=projGHifAA00projGifAA0-projHifAA0ihifAA0
14 11 13 dedth AprojGA-projHA=projGHA0projGA-projHAihA