Metamath Proof Explorer


Theorem pjssge0ii

Description: Theorem 4.5(iv)->(v) of Beran p. 112. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsslem.1 GC
Assertion pjssge0ii projGA-projHA=projGHA0projGA-projHAihA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsslem.1 GC
4 1 choccli HC
5 3 4 chincli GHC
6 5 2 pjhclii projGHA
7 6 normcli normprojGHA
8 7 sqge0i 0normprojGHA2
9 oveq1 projGA-projHA=projGHAprojGA-projHAihA=projGHAihA
10 5 2 pjinormii projGHAihA=normprojGHA2
11 9 10 eqtrdi projGA-projHA=projGHAprojGA-projHAihA=normprojGHA2
12 8 11 breqtrrid projGA-projHA=projGHA0projGA-projHAihA