Metamath Proof Explorer


Theorem pjdifnormii

Description: Theorem 4.5(v)<->(vi) of Beran p. 112. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsslem.1 GC
Assertion pjdifnormii 0projGA-projHAihAnormprojHAnormprojGA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsslem.1 GC
4 3 2 pjhclii projGA
5 4 normcli normprojGA
6 5 resqcli normprojGA2
7 1 2 pjhclii projHA
8 7 normcli normprojHA
9 8 resqcli normprojHA2
10 6 9 subge0i 0normprojGA2normprojHA2normprojHA2normprojGA2
11 his2sub projGAprojHAAprojGA-projHAihA=projGAihAprojHAihA
12 4 7 2 11 mp3an projGA-projHAihA=projGAihAprojHAihA
13 3 2 pjinormii projGAihA=normprojGA2
14 1 2 pjinormii projHAihA=normprojHA2
15 13 14 oveq12i projGAihAprojHAihA=normprojGA2normprojHA2
16 12 15 eqtri projGA-projHAihA=normprojGA2normprojHA2
17 16 breq2i 0projGA-projHAihA0normprojGA2normprojHA2
18 normge0 projHA0normprojHA
19 7 18 ax-mp 0normprojHA
20 normge0 projGA0normprojGA
21 4 20 ax-mp 0normprojGA
22 8 5 le2sqi 0normprojHA0normprojGAnormprojHAnormprojGAnormprojHA2normprojGA2
23 19 21 22 mp2an normprojHAnormprojGAnormprojHA2normprojGA2
24 10 17 23 3bitr4i 0projGA-projHAihAnormprojHAnormprojGA