Metamath Proof Explorer


Theorem pjtoi

Description: Subspace sum of projection and projection of orthocomplement. (Contributed by NM, 16-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 HC
Assertion pjtoi projH+opprojH=proj

Proof

Step Hyp Ref Expression
1 pjidmco.1 HC
2 axpjpj HCxx=projHx+projHx
3 1 2 mpan xx=projHx+projHx
4 pjch1 xprojx=x
5 1 pjfi projH:
6 1 choccli HC
7 6 pjfi projH:
8 hosval projH:projH:xprojH+opprojHx=projHx+projHx
9 5 7 8 mp3an12 xprojH+opprojHx=projHx+projHx
10 3 4 9 3eqtr4rd xprojH+opprojHx=projx
11 10 rgen xprojH+opprojHx=projx
12 5 7 hoaddcli projH+opprojH:
13 helch C
14 13 pjfi proj:
15 12 14 hoeqi xprojH+opprojHx=projxprojH+opprojH=proj
16 11 15 mpbi projH+opprojH=proj