Metamath Proof Explorer


Theorem pltval

Description: Less-than relation. ( df-pss analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses pltval.l ˙=K
pltval.s <˙=<K
Assertion pltval KAXBYCX<˙YX˙YXY

Proof

Step Hyp Ref Expression
1 pltval.l ˙=K
2 pltval.s <˙=<K
3 1 2 pltfval KA<˙=˙I
4 3 breqd KAX<˙YX˙IY
5 brdif X˙IYX˙Y¬XIY
6 ideqg YCXIYX=Y
7 6 necon3bbid YC¬XIYXY
8 7 adantl XBYC¬XIYXY
9 8 anbi2d XBYCX˙Y¬XIYX˙YXY
10 5 9 bitrid XBYCX˙IYX˙YXY
11 4 10 sylan9bb KAXBYCX<˙YX˙YXY
12 11 3impb KAXBYCX<˙YX˙YXY