Metamath Proof Explorer


Theorem ply1baspropd

Description: Property deduction for univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1baspropd.b1 φB=BaseR
ply1baspropd.b2 φB=BaseS
ply1baspropd.p φxByBx+Ry=x+Sy
Assertion ply1baspropd φBasePoly1R=BasePoly1S

Proof

Step Hyp Ref Expression
1 ply1baspropd.b1 φB=BaseR
2 ply1baspropd.b2 φB=BaseS
3 ply1baspropd.p φxByBx+Ry=x+Sy
4 1 2 3 mplbaspropd φBase1𝑜mPolyR=Base1𝑜mPolyS
5 eqid Poly1R=Poly1R
6 eqid PwSer1R=PwSer1R
7 eqid BasePoly1R=BasePoly1R
8 5 6 7 ply1bas BasePoly1R=Base1𝑜mPolyR
9 eqid Poly1S=Poly1S
10 eqid PwSer1S=PwSer1S
11 eqid BasePoly1S=BasePoly1S
12 9 10 11 ply1bas BasePoly1S=Base1𝑜mPolyS
13 4 8 12 3eqtr4g φBasePoly1R=BasePoly1S