Metamath Proof Explorer


Theorem ply1lss

Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses ply1val.1 P = Poly 1 R
ply1val.2 S = PwSer 1 R
ply1bas.u U = Base P
Assertion ply1lss R Ring U LSubSp S

Proof

Step Hyp Ref Expression
1 ply1val.1 P = Poly 1 R
2 ply1val.2 S = PwSer 1 R
3 ply1bas.u U = Base P
4 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
5 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
6 1 2 3 ply1bas U = Base 1 𝑜 mPoly R
7 1on 1 𝑜 On
8 7 a1i R Ring 1 𝑜 On
9 id R Ring R Ring
10 4 5 6 8 9 mpllss R Ring U LSubSp 1 𝑜 mPwSer R
11 eqidd R Ring Base 1 𝑜 mPwSer R = Base 1 𝑜 mPwSer R
12 2 psr1val S = 1 𝑜 ordPwSer R
13 0ss 1 𝑜 × 1 𝑜
14 13 a1i R Ring 1 𝑜 × 1 𝑜
15 4 12 14 opsrbas R Ring Base 1 𝑜 mPwSer R = Base S
16 ssv Base 1 𝑜 mPwSer R V
17 16 a1i R Ring Base 1 𝑜 mPwSer R V
18 4 12 14 opsrplusg R Ring + 1 𝑜 mPwSer R = + S
19 18 oveqdr R Ring x V y V x + 1 𝑜 mPwSer R y = x + S y
20 ovexd R Ring x Base R y Base 1 𝑜 mPwSer R x 1 𝑜 mPwSer R y V
21 4 12 14 opsrvsca R Ring 1 𝑜 mPwSer R = S
22 21 oveqdr R Ring x Base R y Base 1 𝑜 mPwSer R x 1 𝑜 mPwSer R y = x S y
23 4 8 9 psrsca R Ring R = Scalar 1 𝑜 mPwSer R
24 23 fveq2d R Ring Base R = Base Scalar 1 𝑜 mPwSer R
25 4 12 14 8 9 opsrsca R Ring R = Scalar S
26 25 fveq2d R Ring Base R = Base Scalar S
27 11 15 17 19 20 22 24 26 lsspropd R Ring LSubSp 1 𝑜 mPwSer R = LSubSp S
28 10 27 eleqtrd R Ring U LSubSp S