Metamath Proof Explorer


Theorem ply1mpl0

Description: The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses ply1mpl0.m M=1𝑜mPolyR
ply1mpl0.p P=Poly1R
ply1mpl0.z 0˙=0P
Assertion ply1mpl0 0˙=0M

Proof

Step Hyp Ref Expression
1 ply1mpl0.m M=1𝑜mPolyR
2 ply1mpl0.p P=Poly1R
3 ply1mpl0.z 0˙=0P
4 eqidd BaseP=BaseP
5 eqid PwSer1R=PwSer1R
6 eqid BaseP=BaseP
7 2 5 6 ply1bas BaseP=Base1𝑜mPolyR
8 1 fveq2i BaseM=Base1𝑜mPolyR
9 7 8 eqtr4i BaseP=BaseM
10 9 a1i BaseP=BaseM
11 eqid +P=+P
12 2 1 11 ply1plusg +P=+M
13 12 a1i +P=+M
14 13 oveqdr xBasePyBasePx+Py=x+My
15 4 10 14 grpidpropd 0P=0M
16 15 mptru 0P=0M
17 3 16 eqtri 0˙=0M