Metamath Proof Explorer


Theorem pm13.192

Description: Theorem *13.192 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)

Ref Expression
Assertion pm13.192 yxx=Ax=yφ[˙A/y]˙φ

Proof

Step Hyp Ref Expression
1 biimpr x=Ax=yx=yx=A
2 1 alimi xx=Ax=yxx=yx=A
3 eqeq1 x=yx=Ay=A
4 3 equsalvw xx=yx=Ay=A
5 2 4 sylib xx=Ax=yy=A
6 eqeq2 A=yx=Ax=y
7 6 eqcoms y=Ax=Ax=y
8 7 alrimiv y=Axx=Ax=y
9 5 8 impbii xx=Ax=yy=A
10 9 anbi1i xx=Ax=yφy=Aφ
11 10 exbii yxx=Ax=yφyy=Aφ
12 sbc5 [˙A/y]˙φyy=Aφ
13 11 12 bitr4i yxx=Ax=yφ[˙A/y]˙φ