Description: Theorem *13.192 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.192 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr | |
|
2 | 1 | alimi | |
3 | eqeq1 | |
|
4 | 3 | equsalvw | |
5 | 2 4 | sylib | |
6 | eqeq2 | |
|
7 | 6 | eqcoms | |
8 | 7 | alrimiv | |
9 | 5 8 | impbii | |
10 | 9 | anbi1i | |
11 | 10 | exbii | |
12 | sbc5 | |
|
13 | 11 12 | bitr4i | |