Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
pm13.194
Next ⟩
pm13.195
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm13.194
Description:
Theorem *13.194 in
WhiteheadRussell
p. 179.
(Contributed by
Andrew Salmon
, 3-Jun-2011)
Ref
Expression
Assertion
pm13.194
⊢
φ
∧
x
=
y
↔
y
x
φ
∧
φ
∧
x
=
y
Proof
Step
Hyp
Ref
Expression
1
pm13.13a
⊢
φ
∧
x
=
y
→
[
˙
y
/
x
]
˙
φ
2
sbsbc
⊢
y
x
φ
↔
[
˙
y
/
x
]
˙
φ
3
1
2
sylibr
⊢
φ
∧
x
=
y
→
y
x
φ
4
simpl
⊢
φ
∧
x
=
y
→
φ
5
simpr
⊢
φ
∧
x
=
y
→
x
=
y
6
3
4
5
3jca
⊢
φ
∧
x
=
y
→
y
x
φ
∧
φ
∧
x
=
y
7
3simpc
⊢
y
x
φ
∧
φ
∧
x
=
y
→
φ
∧
x
=
y
8
6
7
impbii
⊢
φ
∧
x
=
y
↔
y
x
φ
∧
φ
∧
x
=
y