Metamath Proof Explorer


Theorem pm14.12

Description: Theorem *14.12 in WhiteheadRussell p. 184. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion pm14.12 ∃!xφxyφ[˙y/x]˙φx=y

Proof

Step Hyp Ref Expression
1 eumo ∃!xφ*xφ
2 nfv yφ
3 2 mo3 *xφxyφyxφx=y
4 sbsbc yxφ[˙y/x]˙φ
5 4 anbi2i φyxφφ[˙y/x]˙φ
6 5 imbi1i φyxφx=yφ[˙y/x]˙φx=y
7 6 2albii xyφyxφx=yxyφ[˙y/x]˙φx=y
8 3 7 bitri *xφxyφ[˙y/x]˙φx=y
9 1 8 sylib ∃!xφxyφ[˙y/x]˙φx=y