Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm14.122b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | |
|
2 | 1 | imbi2d | |
3 | 2 | albidv | |
4 | dfsbcq | |
|
5 | 4 | bibi1d | |
6 | 3 5 | imbi12d | |
7 | sbc5 | |
|
8 | nfa1 | |
|
9 | simpr | |
|
10 | ancr | |
|
11 | 10 | sps | |
12 | 9 11 | impbid2 | |
13 | 8 12 | exbid | |
14 | 7 13 | bitrid | |
15 | 6 14 | vtoclg | |
16 | 15 | pm5.32d | |