Metamath Proof Explorer


Theorem pm14.122b

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122b AVxφx=A[˙A/x]˙φxφx=Axφ

Proof

Step Hyp Ref Expression
1 eqeq2 y=Ax=yx=A
2 1 imbi2d y=Aφx=yφx=A
3 2 albidv y=Axφx=yxφx=A
4 dfsbcq y=A[˙y/x]˙φ[˙A/x]˙φ
5 4 bibi1d y=A[˙y/x]˙φxφ[˙A/x]˙φxφ
6 3 5 imbi12d y=Axφx=y[˙y/x]˙φxφxφx=A[˙A/x]˙φxφ
7 sbc5 [˙y/x]˙φxx=yφ
8 nfa1 xxφx=y
9 simpr x=yφφ
10 ancr φx=yφx=yφ
11 10 sps xφx=yφx=yφ
12 9 11 impbid2 xφx=yx=yφφ
13 8 12 exbid xφx=yxx=yφxφ
14 7 13 bitrid xφx=y[˙y/x]˙φxφ
15 6 14 vtoclg AVxφx=A[˙A/x]˙φxφ
16 15 pm5.32d AVxφx=A[˙A/x]˙φxφx=Axφ