Metamath Proof Explorer


Theorem pmapidclN

Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapidcl.u U=lubK
pmapidcl.m M=pmapK
pmapidcl.c C=PSubClK
Assertion pmapidclN KHLXCMUX=X

Proof

Step Hyp Ref Expression
1 pmapidcl.u U=lubK
2 pmapidcl.m M=pmapK
3 pmapidcl.c C=PSubClK
4 eqid AtomsK=AtomsK
5 4 3 psubclssatN KHLXCXAtomsK
6 eqid 𝑃K=𝑃K
7 1 4 2 6 2polvalN KHLXAtomsK𝑃K𝑃KX=MUX
8 5 7 syldan KHLXC𝑃K𝑃KX=MUX
9 6 3 psubcli2N KHLXC𝑃K𝑃KX=X
10 8 9 eqtr3d KHLXCMUX=X